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General Laws, II

I. Additional Rules

A. We have two other rules of this kind, which concern, not validity, but implications. The
first is the Law of Universal Generalization:

If a schema S implies a schema Φ(u) and S does not contain “u” free, then S
implies “(∀u)Φ(u)”

B. The second is the Law of Existential Implication:

If a schema Φ(u) implies a schema S and S does not contain “u” free, then
“(∃u)Φ(u)” implies S.

C. The proofs of these laws are not difficult. Let us prove the first.

1. Suppose that S implies that Φ(u) and that S does not contain “u” free.
2. Consider an arbitrary interpretation I under which “(∀u)Φ(u)” is ⊥.
3. There must be some object, in the UD of I, say, a, which, when assigned to “u”,

makes Φ(u) ⊥.
4. Consider, however, the interpretation I ′, which is just like I, but which assigns the

object a to “u”.
5. Under I ′, then, Φ(u) is ⊥; since S implies Φ(u), S must also be ⊥ under I ′.
6. But, since S does not contain “u” free, the assignment made to “u” does not affect

the truth-value of S. Hence, S must also be ⊥ under I.
7. But, since the interpretation I was arbitrary, S must be ⊥ under any interpretation

under which “(∀u)Φ(u)” is false. So, S implies “(∀u)Φ(u)”.

D. For the second law, we proceed similarly. I shall leave the proof to you as an exercise.

II. The Relettering Law

A. We can generalize these laws by means of the Relettering Law:

If Φ(v) is a substitution instance of Φ(u), then “(∀v)Φ(v)” is equivalent to
“(∀u)Φ(u)” and “(∃v)Φ(v)” is equivalent to “(∃u)Φ(u)”.

Clearly this holds just in case alphabetic variants are equivalent.

B. I prove just the part of this Law dealing with the universal quantifier.

1. Recall that Φ(v) is a substitution instance of Φ(u) only if Φ(v) contains “v” free
exactly where Φ(u) contains “u” free.

2. This implies that Φ(u) does not contain free “v”; so “(∀u)Φ(u)” does not contain
free “v”.

3. Moreover, “(∀u)Φ(u)” implies Φ(v), since the latter is an instance of the former.
4. And, by UGI, therefore, “(∀u)Φ(u)” implies “(∀v)Φ(v)”.
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5. Conversely, “(∀v)Φ(v)” implies Φ(u); Φ(v) does not contain free “u”, since all free
occurrences of “u” are substituted with “v”.

6. Hence, “(∀v)Φ(v)” does not contain free “u”; so, by UG I, again, “(∀v)Φ(v)” implies
“(∀u)Φ(u)”. Hence, they are equivalent.

III. The Law of Deduction, or the Deduction Theorem:

Schemata R1, . . . , Rn imply schema S just in case R2, . . . , Rn imply R1 ⊃ S.
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