Philosophy 230

Wesleyan University Fall 2014

Handout 3b

Polyadic Schemata and Interpretation

- I. Determining monadic validity and implication.
 - A. Is $(\forall x)(Fx \supset Gx).(\exists x)(Fx) \supset (\exists x)(Gx)$ valid?
 - B. Does $(\exists x)Fx.(\exists x)Gx$ imply $(\exists x)(Fx.Gx)$?
 - C. Are $(\exists x)Fx$ and $(\exists x)(Fx \lor Gx).(\exists x)(Fx \lor -Gx)$ equivalent?
 - D. Does $(\exists x)(Fx \lor Gx)$ imply $(\forall x)(-Fx) \supset (\exists x)Gx$?
 - E. Is the following argument valid?
 - 1. If no spies are well-educated, then no well-educated person is deceitful.
 - 2. Wesleyan graduates are well-educated.
 - 3. THEREFORE, if any Wesleyan graduate is deceitful, some well educated people are spies.
- II. A polyadic interpretation of a polyadic schema has four parts:
 - A. A domain of quantification, specified by
 - 1. An English (one-place) predicate (replacement), or
 - 2. A non-empty set
 - B. Interpretations of predicate letters, by
 - 1. English predicates (replacement), or
 - 2. One of the following sets:
 - a. A subset of the domain, for one-place predicates,
 - b. A set of ordered pairs of elements of the domain, for two-place predicates,
 - c. A set of ordered triples of elements of the domain, for three-place predicates, etc
 - d. In general, a set of ordered n-tuples, for each n-place predicate.
 - C. Interpretations of free variables, by
 - 1. English names (replacement), or
 - 2. Elements of the domain
 - D. Interpretations of sentence letters, by
 - 1. English sentences (replacement), or
 - 2. One of the two truth values, \top or \perp .
 - E. No variable bound a quantifier in the schema being interpreted becomes bound by another quantifier after the complex schematic or English predicate is substituted for the predicate letter.
- III. Interpretation by Replacement: examples.

A. $(\forall x)((\exists y)Fxy \supset (\forall y)Fxy)$

- 1. The universe of discourse is interpreted by the extension of "① is a person".
- 2. "FOO" is interpreted by the English predicate: "O dislikes something about O"
- B. $(\forall x)(p \supset (\exists z)Fxz)$
 - 1. The domain is interpreted by the extension of "① is a country".
 - 2. The sentence letter "p" is interpreted by "The USA is in a recession".
 - 3. "F O "" is interpreted by "O owes money to O"
- IV. Restrictions on the more general notion of interpretation by replacement:

No variable that is free in the schema being interpreted becomes bound after the complex schematic or English predicate is substituted for the predicate letter.

V. Interpretations by Assignment:

- A. $(\forall x)((\exists y)(Fxy) \supset (\forall y)(Fxy))$ 1. $DQ = \{\text{Dan Quayle, Llyod Bentsen}\}$ 2. $extF = \{\langle DQ, LB \rangle, \langle DQ, DQ \rangle, \langle LB, DQ \rangle\}$ B. $(\forall x)(Cx.(\exists y)(Px. - Lyx) \supset (\exists y)(Px.Lyx))$ C. $(\exists x)(Cx.(\forall y)(Cy \supset -Lyx))$
- D. $(\exists x)(\forall y)(Fyx \supset Fyy)$
- E. $(\forall x)[(\forall y)(Fyx \supset Fxy) \supset (\forall y)(Fxy \supset Fyx)]$
- F. $(\forall x)(p \supset (\exists z)(Fxyz))$
 - 1. $DQ = \{0, 1, 2, \dots\}$
 - 2. $p := \top$
 - 3. y := 6".
 - 4. $extF = \{ \langle x, y, z \rangle \mid -(y \langle x \rangle, x \langle z \rangle) \}$, i.e., the set of all ordered triples of numbers such that x is not between y and z.
- G. $(\forall x)(Cx.(\exists y)(Px.-Lyx) \supset (\exists y)(Px.Lyx))$
- H. $(\exists x)(Cx.(\forall y)(Cy \supset -Lyx))$