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I. Corollary of completeness: unsatisfiability equivalent to truth functional unsatisfiability in
sequents

A. We move next to two simple corollaries of our completeness proof.

B. First, remember how I described the intuitive idea underlying completeness:

If a generalization is self-contradictory, then some of its consequences about
particular things will turn out to be mutually inconsistent.

C. The first simple corollary of completeness is that the converse of this idea is also true.
I.e.,

If there are quantifier-free sequents of R whose conjunction is truth
functionally unsatisfiable, then R is itself quantificationally unsatisfiable.

D. The argument is very simple. Indeed, it should be already evident to you if you’ve
thought a moment about the proof of completeness from the Central Lemma.

E. Suppose that there are quantifier free sequents of R whose conjunction is truth
functionally unsatisfiable.

F. Recall that the argument of this proof includes the following sub-argument: if there is a
deduction from R of truth functionally unsatisfiable sequents, using only the UI and
strict EII, then there is a deduction of −R from no premises.

G. Now, since we know our system of deduction is sound, it follows that −R is valid; but
then R is unsatisfiable.

II. Corollary of corollary: search procedure for unsatisfiability and validity

A. The second simple corollary follows from the first.

B. The first corollary assures us that if a schema is unsatisfiable, then application of the
Rigid Plan will produce from it a truth functional contradiction.

C. This yields a search procedure for quantificational unsatisfiablity.

1. Given any quantificational schema, apply the Rigid Plan to it.
2. If at some point the sequents generated yield a truth functionally unsatisfiable

conjunction, then we have discovered that the original schema is unsatisfiable.

D. Moreover, the Central Lemma assures us that this procedure will not lead us astray: if
we obtain a truth functional contradiction, the original quantificational schema is
guaranteed to be unsatisfiable.

III. The Rigid Plan doesn’t yield a decision procedure
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A. Note that a search procedure for unsatisfiability is also a search procedure for validity.
If a schema is valid, its negation is unsatisfiable; so procedure is to generate sequents
from the prenex equivalent of its negation.

B. Notice, however, that if a schema is satisfiable, i.e., NOT UNSATISFIABLE, this
procedure will not necessarily tell us that it is.

C. There are two reasons for this.

1. First, all we know about satisfiability on the basis of the Rigid Plan is: if a schema
is satisfiable, then the Rigid Plan won’t produce a truth functional contradiction.

2. Second, as we have seen, the Rigid Plan doesn’t always finish after a finite number
of steps.

D. Consider a schema on which the Plan doesn’t terminate. At any stage there may be no
truth-functional unsatisfiability yet, but we can be sure that we would not generate one
by continuing further.

E. So, on a given satisfiable schema, if the Rigid Plan doesn’t terminate, we won’t ever
find out that no contradiction appears.

F. The upshot of all this is that using the Rigid Plan alone, we can’t, in general, decide, in
a finite number of steps, whether a schema is unsatisfiable or not. The Plan does not
give us a search procedure for unsatisfiability.

G. What is required for a decision procedure for unsatisfiability? It would have to go
beyond what we have, namely, a procedure which tells us in a finite number of steps
that the schema is unsatisfiable if it is. In addition, it would have to tell us in a finite
number of steps that the schema in question is not unsatisfiable if it is not unsatisfiable.
Put in another way, if we had a search procedure for satisfiability as well, we would
have a decision procedure for unsatisfiability, and satisfiablity.

H. One final point. All of the foregoing holds for schemata on which the Rigid Plan does
not terminate. If the Rigid Plan does terminate, clearly we do have a search procedure
for satisfiability as well.

I. As Goldfarb notes, we can show that there are various types of quantificational
schemata on which the Plan terminates. I’ll talk more about these later.

IV. Quantificational Compactness

A. Compactness holds also for quantificational logic. Our next topic is a sketch of the
proof of this theorem:

If every conjunction of members of an infinite set of quantificational schemata
is satisfiable, the whole set is.

B. The argument begins with a series of slight modifications to the Rigid Plan.

C. It is fairly obvious that the Rigid Plan can be applied to finite sets of prenex schemata.
Given such a set {Y1, . . . , Yk}, we simply apply the Rigid Plan to all the members at
stage one, and then, at each subsequent stage, we apply the Plan exactly as before, to
all the sequents generate up through the stage at which we have arrived.

D. Now, what do we do with this extension of the Rigid Plan. Well, it is clear that we can
prove a form of the Central Lemma for finite sets of quantificational schemata:
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If a set {Y1, . . . , Yk} is not jointly satisfiable, then we can deduce from them,
by UI and strict EII, a finite number of quantifier free schemata whose
conjunction is truth functionally unsatisfiable.

E. The proof is little more than a repetition of the original proof.
F. If we never obtain quantifier-free schemata whose conjunction is truth-functionally

unsatisfiable, then (applying, if necessary, Truth-functional Compactness) we can define
an interpretation under which all of Y1, . . . , Yk are true, that is, under which the
conjunction Y1 . . . . . Yk is true.

G. If, on the other hand, we do generate quantifier-free schemata whose conjunction is
unsatisfiable, then the negation of Y1 . . . . . Yk is deducible, whence by soundness the
Y1 . . . . . Yk is unsatisfiable, and so Y1, . . . , Yk are not jointly satisfiable.

H. Now, let’s see how we can modify the Rigid Plan so as to apply to infinite sets of
prenex schemata. Let {Y1, Y2, . . . } be such a set. The modification needed is as follows.

1. At stage 1 we write down Y1.
2. At each subsequent stage n+ 1, we first apply the standard Rigid Plan to generate

new sequents from those obtained up through stage n.
3. Then, we also write down Yn+1.

I. Thus, at stages after n+ 1, further sequents of Y1, . . . , Yn+1 will be generated, as well
as more of the schemata Yk, k > n+ 1. Let’s call this procedure the infinitary Rigid
Plan.

J. Once we provide a precise statement of the procedure as described roughly above, we
prove a result very much like the Central Lemma, using, indeed an argument very much
like the argument of the Central Lemma. Here is the theorem:

Either
(a) at some stage in the application of the infinitary Rigid Plan quantifier-free
sequents will be generated whose conjunction is truth-functionally
unsatisfiable; or
(b) there is an interpretation under which all of Y1, Y2, ... are true.

K. Now, if part (a) of the theorem holds for a given infinite set of schemata, and if k is an
integer such that there exists a truth-functionally unsatisfiable conjunction of sequents
of Y1, . . . , Yk, then the negation of Y1 . . . . . Yk is deducible, so that Y1 . . . . . Yk is
unsatisfiable.

L. It follows that if every conjunction of members of {Y1, Y2, . . . } is satisfiable, then (a)
cannot hold.

M. But the assumption of the Compactness Theorem is that every conjunction of members
of {Y1, Y2, . . . } is satisfiable, so it follows that (b) holds. That is, there is an
interpretation under which all of Y1, Y2, ... are true, that is, the set {Y1, Y2, ...} is
satisfiable. This concludes the proof of Quantificational Compactness.

V. Löwenheim-Skolem Theorem

The It is also worth noting that the proof we have just given establishes the following
theorem. The Theorem is a weak version of the so-called Löwenheim-Skolem Theorem: If a
sentence S is satisfiable, then it is satisfiable in some interpretation whose universe of
discourse consists only of natural numbers.
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