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Completeness II: Proof of the Central Lemma,
Truth-Functional Compactness

I. Possible Outcomes of the Rigid Plan

A. The Plan terminates with a set of quantifier-free sequents that is unsatisfiable. Our
example is (∀x)(∀y)(∃z)(Fxz.− Fyz)

B. The Plan does not terminate. Our example is (∀x)(∃y)Fxy

C. One final possibility we have not yet seen: the Plan terminates but the set of
quantifier-free sequents is satisfiable. Here is an example:

1. (∃x)(∀y)Fxy

2. (∀y)Fa1y

3. Fa1a1

II. Proof of the Central Lemma: defining the verifying interpretation

A. Let Σ be the set of all quantifier-free sequents generated during the execution of the
Rigid Plan, starting with R.

B. By the hypothesis of the Central Lemma,no set of sequents whose conjunction is
TF -unsatisfiable is generated, so every conjunction of sequents in the set Σ is
TF -satisfiable.

C. Now, if the Rigid Plan, applied to R, terminates, then we have possibility 3 above, and
Σ is a finite set of schemata, so that the conjunction of all elements of Σ is a
TF -satisfiable schema. It clearly follows that Σ itself is TF -satisfiable.

D. If the Rigid Plan does not terminate on R, we need to appeal to a theorem about truth
functional logic that we will not prove until later. The theorem is called the
compactness theorem of TF logic:

Suppose that Σ is an infinite set of truth-functional schemata, and suppose
that every (finite) conjunction of members of Σ is satisfiable. Then the set Σ is
itself satisfiable.

E. It follows from the compactness theorem for TF -logic that if our set of sequents, Σ is
infinite, it is TF -satisfiable.

F. Since Σ is truth-functionally satisfiable, there is some assignment of truth values to the
atomic polyadic schemata that occur in members of Σ such that all of the elements of Σ
come out true.

G. These atomic polyadic schemata are predicate letters followed by some appropriate
number of the variables a1, a2, and so forth. Call this assignment of truth values to the
atomic schemata occurring in Σ the assignment A.
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H. Using the assignment A, we construct a polyadic interpretation of all sequents of Σ.
This interpretation, call it I, like all polyadic interpretations, has three parts: a
universe of discourse; an assignment of a member of the universe of discourse to each
free variable ai; and an assignment of an appropriate extension to each of the predicate
letters.

I. The domain of I is defined as follows. For each variable ai which occurs in any sequent
of Σ, we put the natural number i itself into the DQ of I. More precisely,
DQ = {i ∈ N : ai occurs in a sequent of Σ} (Thus, the universe of discourse is some
initial segment of the natural numbers.)

J. The extension of each predicate letter is defined as follows: Each predicate letter is true
of exactly those numbers, or pairs of numbers, or triples of numbers, and so forth, that
the assignment A says it is true of. More precisely, if P is a predicate letter that occurs
in Σ, then extP = {< i1, . . . , in >: Pai1 , . . . , ain is assigned > by A}
1. So, for example, if Fa9a5a16 is a member of Σ, and A assigns > to Fa9a5a16, then

the ordered triple < 9, 5, 16 > is in the extension of FÀÁÂ, i.e., < 9, 5, 16 >∈ extF .
2. If A assigns ⊥ to Fa9a5a16, then keep the ordered triple < 9, 5, 16 > out of the

extension of FÀÁÂ, i.e., < 9, 5, 16 >6∈ extF .

K. Finally, each free variable ai occurring in Σ is assigned the natural number i, i.e.,
ai := i.

III. Proof of the Central Lemma: showing that the interpretation verifies

A. Now we come to the hard part of the proof. We have to show that in fact I � R.

B. What we shall prove is that for every sequent S which occurs at any stage of the
execution of the Rigid Plan on R, I � S. Since the schema with which we started, R, is
the first of these S, I � R, hence R is satisfiable.

C. The argument strategy is the familiar inductive one. We establish that, for any number
n, if I makes all sequents with n quantifiers >, then it makes all sequents with n + 1
quantifiers >. If this conditional claim is true, then, since I does, by hypothesis, make
all quantifier-free sequents, i.e., sequents with 0 quantifiers, true, it makes all sequents
true.

D. The antecedent of the conditional claim is, as always, the induction hypothesis; that is,
in the following argument we will assume that I makes all sequents with n quantifiers >.

E. Suppose now that S is a schema which contains n + 1 quantifiers. There are just two
cases to consider.

F. First, S might be an existential schema, that is, a schema of the form (∃x)Φ(x).

1. By definition of the rigid plan, there is some schema Φ(ai) which occurs during its
execution (indeed, at the stage immediately following the introduction of this
schema).

2. Now, Φ(ai) contains only n quantifiers, so by the induction hypothesis I � Φ(ai).
3. But then, when we assign i to x, Φ(x) comes out >.
4. Hence, I � (∃x)Φ(x); that is, I � S.

G. The second possibility is that S is a universal quantification, i.e., it is of the form
(∀x)Φ(x).
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1. Let m be an arbitrary member of the universe of discourse. We must show that
Φ(x) is > if we assign m to x.

2. By definition of I, m is assigned to the free variable am; and, since m is in the
universe of discourse, am must occur in some sequent.

3. Now, by definition of the Rigid Plan, since the variable am occurs in some sequent,
we must at some stage have instantiated the schema (∀x)Φ(x) with it.

4. That is, we must, at some stage, have written down Φ(am).
5. But this schema contains only n quantifiers, so by the induction hypothesis

I � Φ(am).
6. It follows that Φ(x) is true when x := m. Since m was arbitrary, we conclude that,

no matter what we assign to x, Φ(x) comes out >. That is, I � (∀x)Φ(x).

H. This completes the argument for showing that I makes all sequents in the execution of
the Rigid Plan for R true. Hence, I � R, and so we have almost completed the proof of
the Central Lemma.

I. The only missing piece is a proof of the compactness of truth functional logic.

IV. Truth functional Compactness

A. The strategy of proof of truth functional compactness is in many ways very similar to
that of the Central Lemma. Here also we will first specify a procedure for generating
schemata, just as for the Central Lemma we had the Rigid Plan.

B. Next, we will specify an interpretation, a truth functional one in this case, that is read
off the schemata generated by the procedure.

C. Finally, we will show that the interpretation thus defined does what we want it to do;
in the present case, we will show that it verifies every member of S.

V. Schema generation

A. Before defining the schemata-generating procedure, we need a few definitions.

1. First let’s suppose that we list the sentence letters occurring in members of S in
some way, and name these sentence letters by using the list: p1 is the first sentence
letter on the list, p2 the second, p3 the third, and so on. In effect we are giving
serial numbers to the sentence letters that occur in S. Since S contains infinitely
many schemata, there may or may not infinitely many sentence letters occurring in
S.

2. Call a schema X S-compatible iff W.X is satisfiable for every conjunction W of
members of S.

3. An example might help. Let

S = {p, q, p ∨ q, (p ∨ q) ∨ p, ((p ∨ q) ∨ p) ∨ q, (((p ∨ q) ∨ p) ∨ q) ∨ p, . . . }

Then, clearly, p is S-compatible, since in any interpretation in which p := >, every
member of S is >, and so every conjunction of members of S is >, and so W.p is >
for every conjunction W of members of S.

B. We will use the following general law of truth functional logic: if conjunctions A.C and
B.− C are both unsatisfiable, then A.B is also unsatisfiable.
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C. Here is how the schemata we need are generated:

1. The first schema, call it X1, is p1 if p1 is S-compatible, and −p1 if p1 is not
S-compatible.

2. The subsequent schemata are generated by adding a sentence letter as a conjunct if
the addition continues to be compatible with S, and adding the negation of that
letter otherwise.

3. More exactly, suppose the kth schema, Xk, has been generated.
a. If Xk.pk+1 is S-compatible, then let Xk+1 be Xk.pk+1

b. If, in contrast, Xk.pk+1 is not S-compatible, let Xk+1 be Xk.− pk+1.

D. Thus, each of the generated schemata, X1, X2, X3, . . . is a conjunctions of sentence
letters and negations of sentence letters.

E. It is worth noting that, in contrast to the Rigid Plan, this procedure for generating
conjunctions is not one that we can, in general, carry out in finitely many steps. This is
because, since S has infinitely many elements, there may well be infinitely many truth
tables that one would have to construct in order to show that any given schema is
S-compatible.

VI. S-compatibility of the Xk’s: basis step

A. Now we prove that all the Xk’s are consistent with S. Since the Xk’s are generated
recursively, the proof is by induction.

B. The basis step is the claim that:

X1 is S-compatible.

C. This is obvious if p1 is S-compatible, since then X1 is p1.

D. But X1 might also have been −p1.
E. That would have been the case, however, only if p1 is not S-compatible. This implies

that there is a conjunction of members of S, call it W , such that W.p1 is unsatisfiable.

F. Now, −p1 either is S-compatible or is not. In the first case there’s nothing we need to
do.

G. Thus suppose that −p1 is not S-compatible. Then, by definition there must be a
conjunction Z of members of S such that Z.− p1 is unsatisfiable.

H. Now comes the crucial move. We have now reached the conclusion that both W.p1 and
Z.− p1 are unsatisfiable. By the general law of truth-functional logic mentioned above,
W.Z is then also unsatisfiable.

I. But, W.Z is a conjunction of members of S. This contradicts the assumption we have
made about S. Hence it cannot be the case that both p1 and −p1 are not S-compatible.

VII. S-compatibility of the Xk’s: induction step

A. The induction step is really no more than a repetition of the basis step for the k + 1th
schema generated.

B. The claim to be proven is that:

For any k, if Xk is S-compatible then so is Xk+1.
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C. As before, the first question is, is Xk.pk+1 is S-compatible? If so, then clearly
Xk+1=Xk.pk+1 is S-compatible.

D. Also as before, if Xk.pk+1 is not S-compatible, but Xk.− pk+1 is, then Xk+1 is
S-compatible.

E. So suppose that neither Xk.pk+1 nor Xk.− pk+1 is S-compatible. It follows that there
are conjunctions W and Z of members of S such that W.Xk.pk+1 and Z.Xk.− pk+1 are
both unsatisfiable. By the same general law cited above, W.Z.Xk is unsatisfiable in
which case Xk is not S-compatible, contradicting the induction hypothesis.

VIII. Compactness: verifying interpretation for S

A. As in the completeness proof, now we define an interpretation on the basis of the
schemata generated.

B. We have just shown that Xk is S-compatible for each k. Let I be the truth functional
interpretation that, for each k, assigns > to pk if pk is a conjunct of Xk, and ⊥ to pk if
−pk is a conjunct of Xk.

C. Clearly, I, and only I, makes each Xk true. What we will now argue is that I makes
every member of S true.

D. Let Z be any schema in S. The sentence letters of Z clearly are among the pk’s.
Specifically, they are pZ1 , pZ2 , . . . , pZk

. The question is: is it possible that I 6� Z?

E. Let z = max{Z1, . . . , Zk}, i.e., the highest serial number of the sentence letters that
occur in Z.

F. As we have shown, I is the only interpretation such that I � Xz.

G. If I 6� Z, then there would be no truth value assignment that made both Xz and Z true.

H. But then, Z.Xz is unsatisfiable, in which case Xz would not be S-compatible. But all
Xk’s are S-compatible; hence I � Z.

I. Since Z is an arbitrary member of S, it follows that I makes every member of S true;
hence, S is satisfiable. This conclude the compactness proof.
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